Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 579: 112087, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827228

RESUMO

Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17ß-estradiol (E2) towards estrogen receptors (ERs: α and ß) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERß affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERß or shRNA mediated knockdown of ERα and specific activation of ERß blunted PDGF-induced cell migration. Furthermore, specific ERß activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERß-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERß activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERß activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.


Assuntos
Receptor alfa de Estrogênio , Receptores de Estrogênio , Humanos , Receptores de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Actinas/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Adesões Focais/metabolismo , Pseudópodes/metabolismo , Remodelação das Vias Aéreas/fisiologia , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia
2.
J Pathol ; 260(3): 339-352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171283

RESUMO

Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Camundongos , Remodelação das Vias Aéreas , Asma/metabolismo , Modelos Animais de Doenças , Kisspeptinas/efeitos adversos , Kisspeptinas/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Kisspeptina-1/metabolismo , Hipersensibilidade Respiratória/metabolismo
3.
Virol J ; 11: 99, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24884895

RESUMO

BACKGROUND: Enterovirus 71 (EV-71) is a neurotropic virus causing Hand, Foot and Mouth Disease (HFMD) in infants and children under the age of five. It is a major concern for public health issues across Asia-Pacific region. The most effective way to control the disease caused by EV-71 is by vaccination thus a novel vaccine is urgently needed. Inactivated EV-71 induces a strong, virus-neutralizing antibody response in animal models, protecting them against a lethal EV-71 challenge and it has been shown to elicit cross-neutralizing antibodies in human trials. Hence, the large-scale production of purified EV-71 is required for vaccine development, diagnosis and clinical trials. METHODS: CIM® Monolith columns are single-piece columns made up of poly(glycidyl methacrylate co-ethylene dimethacrylate) as support matrix. They are designed as porous channels rather than beads with different chemistries for different requirements. As monolithic columns have a high binding capacity, flow rate and resolution, a CIM® DEAE-8f tube monolithic column was selected for purification in this study. The EV-71 infected Rhabdomyosarcoma (RD) cell supernatant was concentrated using 8% PEG 8000 in the presence of 400 mM sodium chloride. The concentrated virus was purified by weak anion exchange column using 50 mM HEPES + 1 M sodium chloride as elution buffer. RESULTS: Highly pure viral particles were obtained at a concentration of 350 mM sodium chloride as confirmed by SDS-PAGE and electron microscopy. Presence of viral proteins VP1, VP2 and VP3 was validated by western blotting. The overall process achieved a recovery of 55%. CONCLUSIONS: EV-71 viral particles of up to 95% purity can be recovered by a single step ion-exchange chromatography using CIM-DEAE monolithic columns and 1 M sodium chloride as elution buffer. Moreover, this method is scalable to purify several litres of virus-containing supernatant, using industrial monolithic columns with a capacity of up to 8 L such as CIM® cGMP tube monolithic columns.


Assuntos
Cromatografia por Troca Iônica/métodos , Enterovirus Humano A/isolamento & purificação , Virologia/métodos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA